Microhardness testing company in US today? The profile of the flow of the solder at these bonds was documented using the SEM with backscatter imaging, which correlates brightness in the image with atomic density. Some voids were found in the solder as shown the SEM image. An EDS spectrum of the solder was acquired which showed that the solder was a tin/lead (80/20) solder. The EDS map clearly shows the copper wire and copper pad (red) with the tin lead solder (light blue) that appears to have flowed well and made a good bond between the copper elements. This map also shows the fiberglass bundles that add structural integrity to the board.
Analysis and Results: The submitted bottle was examined for signs of interior distress, and the water from the bottle was removed and maintained. Some of the suspended particulate was filtered and examined non-destructively by light microscopy first, to characterize the material. A low magnification stereo microscope image of the filtered white particulate is shown in the image above. From this image, biological tissues were ruled out, and the material was observed to be crystalline. Polarized light microscopy (PLM) was used to analyze the sample next. From this examination, the material showed birefringence as shown in the PLM image on the right. The PLM Image Stereo Microscope image suspect material showed optical properties and morphology dissimilar to common carbonates and sulfates. It was determined to be a birefringent crystalline material, but it could not be identified using only PLM methods. Therefore, analysis using scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS) would have to be performed to obtain further information about the suspect material.
?We partner with companies in all phases of product development and sales, including R&D, manufacturing, QC, advertising and failure analysis. Our laboratory offers a highly-trained and experienced staff utilizing a powerful set of analytical tools (SEM with EDS and backscatter detectors, Bruker X-Flash elemental mapping, X-Ray imaging, Micro-FTIR spectroscopy, Micro-XRF, light microscopy, cross sectioning/precision polishing and microhardness testing). Find even more info on find more info.
The client was able to determine the source of the black dust was due to the mechanical breakdown of the foam cushions in the impacted room, and not from mold or mildew growth. The experienced analysts at MicroVision Labs were able to differentiate the foam materials from either blown cellulose or urethane foam insulation or air filters, allowing for the client to easily remove the problem cushions.
Have you always been located in Chelmsford, MA? No, for the first four years MicroVision Labs operated at 15 A Street, Burlington, MA. In 2007 we moved to our present location in Chelmsford, MA. What business designation does MicroVision Labs have? MicroVision Labs is designated as a veteran owned small business. How many staff members does MicroVision Labs have? MicroVision Labs is a small business employing 5-10 full-time, part-time, and contract employees.
Using light microscopes to examine the optical and structural properties of samples is one of the oldest and most useful analytical techniques. MicroVision Labs has several high magnification microscopes, including a powerful Zeiss Axiotech microscope capable of 1800x optical magnification, with additional digital magnification, allowing for visualization of sub-micron structures. PLM allows for the identification of a wide range of particles through the examination of the internal birefringence, or variation in optical indices, within a sample. Explore additional details on https://microvisionlabs.com/.